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1 | INTRODUCTION

The growth rate u is one central parameter for the characterization,
comparison, and classification of cellular processes. To predict
microbial growth behavior, Monod (1949) established the first
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Abstract

Knowledge about the specific affinity of whole cells toward a substrate, commonly
referred to as ks, is a crucial parameter for characterizing growth within bioreactors.
State-of-the-art methodologies measure either uptake or consumption rates at
different initial substrate concentrations. Alternatively, cell dry weight or respiratory
data like online oxygen and carbon dioxide transfer rates can be used to estimate ks.
In this work, a recently developed substrate-limited microfluidic single-cell
cultivation (sI-MSCC) method is applied for the estimation of ks values under
defined environmental conditions. This method is benchmarked with two alternative
microtiter plate methods, namely high-frequency biomass measurement (HFB) and
substrate-limited respiratory activity monitoring (sI-RA). As a model system, the
substrate affinity ks of Corynebacterium glutamicum ATCC 13032 regarding glucose
was investigated assuming a Monod-type growth response. A ks of <70.7 mg/L
(with 95% probability) with HFB, 8.55 + 1.38 mg/L with sI-RA, and 2.66 + 0.99 mg/L
with sI-MSCC was obtained. Whereas HFB and s|-RA are suitable for a fast initial ks
estimation, sI-MSCC allows an affinity estimation by determining tp at concentra-
tions less or equal to the ks value. Thus, sI-MSCC lays the foundation for strain-
specific ks estimations under defined environmental conditions with additional

insights into cell-to-cell heterogeneity.
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growth kinetic model in 1949 while considering the bioavailability
of the substrate (Equation 1). Within this empirical relationship, kg
denotes the affinity of a bacterium toward a corresponding substrate
S with the concentration c¢; and marks the concentration, where half
of the specific maximum growth rate .y is reached (Ferenci, 1999).
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K= Hmax etk (1)

The growth of cells in bioprocesses is affected by biological,
chemical, and physical factors (Takors, 2012). In large-scale
bioreactors, gradients of the substrate, dissolved gases, and pH occur
through limiting capacities of engines, resulting in reduced input of power
per volume, increased mixing times, and reduced k, a values (Bylund et al.,
1998; Enfors et al., 2001; Junker, 2004; Mandenius, 2016). Hence, if the
consumption rates of components required by the cells are higher
than their supply, limiting conditions are present. This can lead to
stress responses, which have a substantial impact on the yield and
quality of the target product (Enfors et al., 2001). Therefore,
access to precise ks values is urgently required to model complex
substrate gradients occurring within bioreactors by computational
fluid dynamics. Additionally, ks values are necessary to adjust the
steady-state concentration of a carbon source, especially in
bioprocesses operated in chemostat mode, to secure an efficient
conversion of substrate into biomass (Harrison, 1973).

State-of-the-art estimation of ks is based on measuring specific
substrate uptake rates gs within the exponential growth phase (Kell &
Sonnleitner, 1995). Uptake rates gs are determined as a function of
substrate concentration c¢s and correspond to the ratio of growth rate u
to the biomass yield Yy,s in accordance with Equation (2). This lays the
foundation to estimate ks by incorporating the Monod expression
(Equation 1) and rearranging for ks (Equation 3) (Schmideder et al., 2015).
The approach can be extended for chemostat cultivations under the
condition that no residual concentration is present in the effluent by
replacing the substrate concentration cs with the feed concentration
Csfeeas @S Well as the growth rate with the set dilution rate D (Equation 4)
(Graf et al., 2020).

_ K
9= Yxss' 2

uma)(
ks = cso| —— - 1}, 3
s = Cs [qS'YX/S ] 3
ks = CS,feed'(% - 1} (4)

Mainly three methods are reported in the literature to determine
uptake rates gs, including high-performance liquid chromatography
(HPLC) (Senn et al., 1994), enzymatic assays (Graf et al., 2020), or
liquid scintillation counting (Lindner et al., 2011). However, liquid
scintillation counting is only applicable if a labeled substrate such as
14C glucose is used. Alternative approaches to estimate the ks value
are to measure the oxygen uptake rate (OUR) or the oxygen transfer
rate (OTR) of aerobic growing cells, which correlates to growth
(Stockmann et al., 2003; Wechselberger et al, 2013). With the
biomass concentration cx and the biomass yield on oxygen Yy, o,, the

ks can be estimated according to the following equation:

- Hmax *Cx _
ks = cs [7OUR‘YX/02 1]~ (5)
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Respirometry methods for the estimation of kinetic parameters
have been used more frequently and can deliver similarly precise ks
estimations in comparison to established chemostat methods (Legan &
Owens, 1987; Oliveira et al., 2009). These methods often rely on
experiments in a respirometer but can also be conducted in situ through
pulse respirometry (Goudar & Strevett, 1998; Ordaz et al., 2008).

Reported ks values are scarce even for prominently used organisms.
Corynebacterium glutamicum is recognized as a model organism in
bioprocess engineering and industrial microbiology for its broad
capabilities as a producer of value-added goods like amino acids
(Hermann, 2003), organic acids (Wendisch et al., 2006), polymer
precursors (Becker et al., 2018), aromatic chemicals (Wendisch
et al., 2016), and proteins (Freudl, 2017). Moreover, C. glutamicum
stands out for its robustness in large-scale applications (Graf et al.,
2020; Vertés et al,, 2012). However, even for this industrial-
relevant organism, only a few published ks values are available
regarding glucose (Graf et al., 2020; Lindner et al., 2011; Uhde
et al., 2013). As stated by Kovarova-Kovar and Egli, this is due to
the fact, of analytical difficulty in monitoring substrates at growth-
controlling concentrations (Kovarova-Kovar & Egli, 1998). The
applied state-of-the-art methods for a high precision ks estimation
are technically very complex, and even though they primarily
provide merely extrapolated values, if liquid scintillation counting
was not used.

This study demonstrates a microfluidic method and compares this
method to two microtiter plate methods for estimating ks values using C.
glutamicum ATCC 13032 as a model organism to expand the biochemical
engineering toolbox. For all methods, a Monod-type response of the
specific growth rate is assumed to estimate ks. The first microtiter plate
method is based on a computational approach for uncertainty
quantification and relies on high-frequency biomass observations (HFB).
This is accomplished with an end-to-end Bayesian modeling approach,
according to Helleckes et al. (2022). The second method utilizes the
newly developed micro(u)-scale Transfer rate Online Measurement
(LTOM) (Dinger et al., 2022) device for high-throughput respiratory
activity measurements. Substrate-limited respiratory activity (slI-RA)
monitoring determines the change in the OTR after spiking a defined
glucose concentration, which correlates for aerobic growing cells with the
growth rate. These microtiter plate methods are compared with the
substrate-limited microfluidic single-cell cultivation (sI-MSCC) method.
Novel microfluidic single-cell cultivations (MSCC) allow the cultivation of
cells in defined environments (Wang et al, 2010), which can be
maintained even for substrate-limiting conditions (Lindemann et al,
2019). This technology was applied to estimate the ks value of
C. glutamicum ATCC 13032 regarding protocatechuate acid (PCA) as a
carbon source (Lindemann et al., 2019). Burmeister et al. (2021) used the
same approach and estimated the lysine affinity for the lysine auxotrophic
C. glutamicum AlysA pEKEx2-eYFP strain. However, MSCC as a
technology has not yet been systematically established as a tool for ks
estimation. It is unclear how comparable results are to conventionally
established methods since studies on main carbon sources like glucose

have not been performed to date. Finally, presented technologies (HFB,
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sl-RA, and sI-MSCC) are compared with literature values and future

application fields of each individual method are pointed out.

2 | MATERIALS AND METHODS

2.1 | Bacterial strain growth media

The bacterial strain C. glutamicum ATCC 13032 was used in this study.
Cultivations were performed with modified CGXIlI medium (Unthan et al.,
2014), containing per liter of distilled water 20 g (NH4),SOy4, 1 g KoHPOy,
1g KHyPO4 5g urea, 13.25mg CaCl,-2H,0, 0.25g MgS047H,0,
10 mg FeS0O4:7H,0, 10 mg MnSO4-H,0, 0.02 mg NiCl,:6H,0, 0.313 mg
CuSQO45H,0, 1 mg ZnSO,47H,0, 0.2mg biotin, 37.5mg citrate, 42 g
MOPS, and 40 g p-glucose, unless stated otherwise. Similar to previous
studies, PCA was replaced by citrate as iron chelator (Ho et al., 2022).
Citrate as a potential available carbon source can only be metabolized by
C. glutamicum if the saline concentration of NaCl is at least 1g/L
(Liebl et al., 1989; von der Osten et al., 1989).

2.2 | High-frequency biomass observations and
Bayesian Monod modeling

Microtiter plate batch cultivation experiments were carried out in a
48-well FlowerPlate (m2p-labs GmbH) incubated in a BiolLector Pro
(m2p-labs GmbH) (Figure 1a). Culture well AO1 was inoculated to an
initial biomass concentration of 0.25 g/L from a glycerol stock. The
cultivation parameters were set to 1400 rpm, 85% humidity, and
30 °C. The online signals for biomass (backscatter; gain 3), dissolved
oxygen pO, and pH were measured with a cycle time set to 1 min
(Figure 1b). Detailed information on reference gain and filterset can
be found in the raw data file online (Osthege & Schito, 2022). The
FlowerPlate was covered with a gas-permeable sealing foil (m2p-labs
GmbH) to prevent contamination and allow uniform gas exchange.
Medium preparation and inoculation were performed manually under
a laminar flow hood.

Raw data was parsed with bletl version 1.1.0 (Osthege, Tenhaef,
Helleckes, et al., 2022; Osthege, Tenhaef, Zyla, et al., 2022).
Backscatter observations between 2 and 9.5h were removed from
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FIGURE 1 Experimental setup and workflow for estimating the ks of microbial cells with high-frequency biomass observations.

(a) Microbioreactor batch cultivations with (b) high-frequency measurements of biomass-related backscatter. The ks parameter in the (c) Monod
model causes curvature (arrow) of the biomass trajectory. A computational model ® predicts the likelihood £ of observations. (d) Probabilistic
parameter estimation obtained by Markov-chain Monte Carlo (MCMC) using the probabilistic programming library PyMC.

85UB017 SUOLLLIOD SAINRID 3ot dde 8y} Aq peuIenob 88 S9o1Le YO ‘SN J0 $9INI 10} ARIq1T BUIIUO AB[IM UO (SUONIPUCD-PUE-SWISIW0D A8 | 1M ALe1q 1 pU1|UO//:SANLY) SUONIPUOD pue Swie | 8Y) 89S *[£202/80/LT] U0 A%iqiT auluo A8 |1 *BIUBD Ud1eesay HAWD Yo!Ine winiuszsBunydsio4 Aq GyE8Z 110/Z00T 0T/10p/Luod A8 | im Ake.q ul|uo//:sdny wouy pepeojumod 'S €202 '0620260T



STEINHOFF ET AL.

the data set to account for inaccuracies of the Monod assumption of
approximately constant growth rate (Equation 1 with cs > ks) for
most of the exponential phase (Helleckes et al., 2022; Osthege,
Tenhaef, Zyla, et al, 2022; Unthan et al, 2014). A biomass/
backscatter calibration was established from reference backscatter
measurements of a robotically prepared biomass dilution series of 48
biomass concentrations ranging from 23.1+0.4g/L to a 1000x
dilution. The calibration model built with calibr8 version 6.5.2
(Osthege & Helleckes, 2022a) and the parameter estimates as well
as a visualization of the fit, can be found in the supporting
information.

A Monod differential equation model was set up to describe the
time series of biomass concentrations in the batch cultivation
(Figure 1c). The respective equations and explanations are given in
Chapter 3.1. The calibration model was used to relate predicted
biomass concentrations with observed backscatter values, creating a
likelihood for parameter estimation (Figure 1d). The model was
implemented as a probabilistic model using Python packages PyMC
version 4.0.0b6 (Wiecki et al., 2022) and murefi version 5.1.0
(Osthege & Helleckes, 2022b). Bayesian parameter estimation was
performed by sampling the joint posterior probability distribution of
model parameters using PyMC. In this iterative procedure, thousands
of parameter sets are used to predict biomass trajectories with the
ODE model and accepted or rejected based on the prior probability
of the parameter values and how likely it would have been to observe
the given data from such a trajectory. The result is a collection of
thousands of parameter sets for the Monod model, each of which
could plausibly explain the observed data. A detailed description of
the method is given by Helleckes et al. (2022).

Here, the PyMC implementation of the DE-MCMC-Z algorithm
(ter Braak & Vrugt, 2008) was used with 20,000 tuning and 50,000
draw iterations in four independent Markov chains. Convergence of
the Markov-chain Monte Carlo (MCMC)-sampling was checked by
validating that all R < 1.01 using ArviZ version 0.12.0 (O. Martin et al.,
2021). For detailed explanations of calibration modeling and the
Bayesian modeling of batch cultivations using the Monod model, it
can be referred to Helleckes et al. (2022). The full data set and code
to reproduce the ks analysis using the high-resolution biomass and
Bayesian ODE modeling approach are provided online (Osthege &
Schito, 2022).

2.3 | Substrate-limited respiratory activity
monitoring

For the respiratory determination of ks, deep-well microtiter plates
Riplate RW (Ritter GmbH) with 96 wells were used. The OTR of every
well was online monitored with the uTOM (Figure 2a) (Dinger et al.,
2022). All wells were filled with 1 mL of inoculated culture. Cultivations
were performed at a temperature of 30°C, a shaking speed of
800 rpm, and a shaking diameter of 3 mm. Precultures for inoculation
were performed in 250 mL shake flasks with CGXIl medium with
10g/L glucose as the sole carbon source. The main culture was

DIOENGINEERIN
inoculated with 5 (v/v)% from a stationary phase preculture and was
also conducted in CGXIl medium but with 1 g/L glucose.

After the initial batch cultivations, 100 pL glucose solutions with
different concentrations were spiked into each well of the microtiter
plate (Figure 2b). This resulted in a theoretical filling volume of 1.1 mL
per well with final glucose concentrations of 0.0, 2.5, 5.0, 7.5, 10.0,
12.5, 15.0, 17.5, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0 100.0 mg/L.
A multichannel multistepper pipette Eppendorf Research pro
(Eppendorf) was used to spike all wells 2 min before the next
OTR measurement phase started. The first 30s of the measure-
ment phase of the uTOM device were cutoff, and OTRs were
determined by the oxygen partial pressure decrease within the
next 2 min. The end of the initial batch and glucose depletion was
indicated by a rapid decrease in the OTRs (Figure 2c), whereas the
glucose spike resulted in a concentration-dependent fast increase
of the OTR. The resulting OTRs after the spike with 0.0 mg/L
of glucose were subtracted from all other resulting OTRs.
A regression of these values to the Monod equation was
performed with OriginPro (OriginPro 2020 9.7.0.188; OriginLab

Corporation) to estimate the ks value (Figure 2d).

2.4 | Substrate-limited microfluidic single-cell
cultivation

2.4.1 | Design and microfluidic chip fabrication

The design of the microfluidic chip is based on a recently developed
MSCC method from Lindemann et al. (2019). The MSCC systems
consist of 12 arrays of “quasi” one-dimensional growth channels to
restrict cell proliferation of a few cells (<15) along one axis
(Figure 3a). These growth channels are open on both ends and
connected to adjacent supply channels. There, the fresh medium
flows with a high velocity to ensure a constant and defined medium
supply to the growth channels. In total, one cultivation unit consists
of 1440 growth channels.

A silicon wafer mold was fabricated with a two-layer photo-
lithography process and served as a mold for PDMS (poly(dimethyl-
siloxane)) soft lithography (Griinberger et al., 2013). The construction
and development of a siliconwafer was carried out according to
the protocol of Tauber et al. (2020). During soft lithography, the
siliconwafer was covered with PDMS in a ratio 10:1 between the
base and curing agent (Sylgard 184 Silicone Elastomer, Dow Corning
Corporation). Afterward, the wafer was degassed in a desiccator for
30 min and backed at 80 °C for 2 h (universal cupboard; Memmert
GmbH). After this step, the PDMS chips were cut out from the wafer,
cleaned three times with isopropanol, and blown dry with pressurized
air. The cover glasses (D 263 T eco, 39.5 x 34.5 x 0.175 mm, Schott)
for the microfluidic chip were also cleaned after the same protocol.
Afterward, the PDMS chip and the cover glass were activated with
O, plasma (Femto Plasma Cleaner; Diener Electronics) for 24 s with a
power of 45% and assembled. Before the use, PDMS-glass bonding
was strengthened by a 2 min bake at 80 °C.
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FIGURE 2 Experimental setup and workflow for estimating the ks of microbial cells with substrate-limited respiratory activity monitoring.
(a) Micro(u)-scale Transfer rate Online Measurement device (WTOM) for 96-deepwell microtiter plates. The figure for the uTOM device was
adapted from Dinger et al. (2022). (b) Spike of varying substrate concentrations after the termination of the batch cultivations with 96 replicates.
(c) Observation of the substrate-dependent oxygen transfer rates. (d) ks determination based on Monod-type respiratory response.

2.4.2 | Single-cell cultivation

Overnight precultures of C. glutamicum were inoculated from glycerol
stock in 10 mL CGXIl medium in 100 mL flasks on a rotary shaker at
120rpm. Cells from the overnight culture were transferred to
inoculate a second shake flask culture with a starting ODgqo of 0.1
for harvesting of cells in the exponential growth phase. The cells
were used to inoculate the microfluidic device manually through a
syringe containing a cell suspension with an OD of approximately 0.6.
Seeding of the growth channels was obtained by random trapping of
cells. After successfully seeding, the microfluidic chip was connected
to pressure-driven pumps (Flow EZ Pressure Controller; Fluigent) and
controlled by software (All in One; Fluigent). An inlet pressure of
150 mbar was applied for a constant medium supply (Figure 3b)
(Li et al., 2017). Afterward, growth kinetic studies in CGXIl were
performed containing concentrations from O up to 150g/L
glucose. The possibility of interactions between hydrophilic
molecules such as glucose and PDMS as a hydrophobic polymer
can be excluded (Toepke & Beebe, 2006). Each cultivation medium

was additionally sterile filtered to prevent channel clogging during
microfluidic experiments.

2.4.3 | Live cell imaging, data analysis, and growth
rate modeling

Time-lapse microscopy was performed using an inverted automated
microscope from Nikon (Nikon Eclipse Ti2; Nikon). The microscope
stage was surrounded with a cage incubator for optimal temperature
control (Cage incubator; OKO Touch; Okolab S.R.L.). The microfluidic
device was placed inside the cage incubator in an in-house fabricated
chip holder. Additionally, the setup was equipped with a 100x oil
objective (CFlI P-Apo DM Lambda 100x Qil; Nikon GmbH), DS-Qi2
camera (Nikon camera DS-Qi2; Nikon GmbH), and an automated
focus system (Nikon PFS; Nikon GmbH) to compensate the thermal
drift during long term microscopy (Figure 3a). For each experiment,
80 positions containing several cultivation channels were selected

manually and were managed with NIS-Elements Imaging Software
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FIGURE 3 Experimental setup and workflow for estimating the ks of microbial cells with substrate-limited microfluidic single-cell cultivation
(sI-MSCC). (a) Live cell imaging setup consisting of an inverted phase-contrast microscope and a microfluidic single-cell cultivation chip, allowing
high-spatiotemporal resolution. (b) Single-cell cultivation performed under varying substrate concentrations. (c) Determination of tp of the
online-monitored time-lapse data. (d) Establishing a kinetic model based on a Monod-type response by the conversion of ty into growth rates u
to display growth as a function of glucose concentration to estimate ks ¢-mscc.

(Nikon NIS Elements AR software package; Nikon GmbH). Time-lapse
images were recorded every 5 min.

Data analysis of the live-cell image sequences was performed
using the open-source software Fiji 1.52 (Schindelin et al., 2012). For
determining single-cell division events, one offspring cell was
selected whose descendants were present until the end of the
measurement. Based on the growth of this cell line, it can usually be
guaranteed that at least 50 single-cell division events occurred. Two
categories were differentiated for the case that a selected glucose
concentration resulted in reduced growth. The first category
describes cell growth for less than four generations, defined as no
growth. The second category describes cases where less than 50
single-cell division events were observed. In this case, offspring of
further descendants were considered for quantification to reach the
minimum of at least 50 single-cell division events.

The doubling time of each offspring of the selected cell lineage
was determined after the first division event through selection of the

cell by using the integrated multipoint function of Fiji (Figure 3c).

This ensured a frame-independent tracking of temporally asymmetric
divisions of daughter cells depending on the generation time. The
respective mean values for tp and growth rates were determined
using the geometric mean (Phoenix, 1997). Here, extreme outliers
with tp > 1000 min or tp < 30 min were not considered, because the
formula for the determination of the standard deviation uses
summation of squared errors. Therefore, the impact of extreme
outliers is espicalliy high for low sample sizes. We observed that
doubling times of 1000 min or below 30 min generate a standard
deviation equal to the mean. To avoid this, we neglected these
extreme rare outliers when considiering our kinetics due to the loq
frequency to determine an affinity reflecting more than 95% of the
population. The first step in determining ks is calculating the growth
rate with each determined doubling time. The equation and
explanation are stated in Chapter 3.1. Then, the corresponding
geometric mean, including the standard deviation, is plotted as a
function of the respective glucose concentration. A Monod kinetic fit
is then established using OriginPro (OriginPro 2020 9.7.0.188;
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OriginLab Corporation) (Figure 3d). The regression slope obtained

from the logarithmic plot corresponds to ks.

3 | RESULTS AND DISCUSSION
3.1 | Comparison of methodologies

In this work, three unique methods for ks estimation are presented:
HFB, sI-RA, and sI-MSCC. All methods assume a Monod-type growth
response (Equation 1). Thereby, the ks value is always estimated by
observing the growth under substrate limiting conditions. For the
understanding of the different methodologies and their potentials as
well as limits, a comparison is given regarding (1) cultivation
workflows, (2) computational approaches for ks estimation, and (3)

analytical procedures.

3.1.1 | Cultivation workflows

HFB and sl-RA are based on microtiter cultivation systems (Figures 1
and 2). In contrast, sI-MSCC is based on MSCC devices (Figure 3). In
the HFB workflow, the biomass is observed during a batch cultivation
over time. The glucose is steadily consumed by the cells until
complete glucose consumption, which is indicated by a sharp rise in
the DO (Figure 1b). The rise in DO can be attributed to the fact that
the glucose uptake rate is linked via growth to the OUR. The link of
growth and OUR is utilized for ks estimation with sl-RA. For the
sI-RA, depletion of glucose after an initial batch cultivation is
indicated by a drop in OTR (Figure 2c). In comparison to the HFB
workflow, after the termination of the batch cultivation, different
glucose solutions are spiked into the microtiter plate wells to adjust
defined substrate levels. For the third alternative, sI-MSCC, defined
and contrasting to the other methods, constant conditions are
reached by perfusion with a medium containing a defined glucose
concentration. Thereof, HFB and sI-RA are faster and easier to
perform. Nonetheless, sI-MSCC provides a more defined environ-
ment due to perfusion and thereby, constant substrate concentra-
tions even at limiting conditions. In contrast to sI-MSCC and sI-RA,
where glucose concentrations are set by perfusion or spiking, the
glucose concentration is only measured once at the onset of the
stationary phase with a hexokinase assay for the HFB.

3.1.2 | Computational approaches for ks estimation

In HFB, a batch cultivation is monitored by backscatter measure-
ments. For parameter inference, the parameter sets proposed by the
MCMC algorithm are used to simulate biomass concentration
trajectories using the differential model (Equation 6) based on the
Monod equation (Equations 1 and 2). These concentration values
are fed into an asymmetric logistic calibration model to predict the
distribution of backscatter observations. This enables the model to

relate model parameters with observations, learning about how well a
chosen parameter set describes the data. For a detailed explanation

of this modeling procedure, see Helleckes & Osthege et al. (2022).

dCX Cs

Wzl*lmax s Cx ks + Cs’

des -1 dox (©)
dt o Yy odt

Instead of the biomass concentration cy, the OTR is observed in
sl-RA. The change in dissolved oxygen dO,/dt is assumed to be
negligible compared with the OUR, similar to Mihlmann et al. (2018)
and lhling et al. (2021). Hence, the OTR is used equivalently to the
OUR (Equation 7). Data by Graf et al. (2020) indicate a linear
correlation of growth rates (0.2-0.4 h™1) and OURs and therefore, a
constant Yy,0o. However, this assumption is not necessarily true at
very low growth rates. Only due to this simplified linearity
assumption of the growth rate and the OTR, the sl-RA model is
interchangeable with the models of the other methods. Thereby, the
ks value can be estimated directly with the glucose concentration-

dependent OTR and using a regression of the Monod equation.

OTR = OUR

do,
s. t. OUR > gt (7)
_ OTR-Yy/o,

M o

(8)

For sI-MSCC, single-cell doubling times tp are determined. Under
the assumption that both cells have the same size after splitting, the
growth rate p can be calculated (Equation 9). Similar to sI-RA, a
mathematical fit under the assumption of Monod-type response of
growth is used to estimate the ks value based on the glucose
concentration-dependent growth rates.
_ 2

B= ty

3.1.3 | Analytical procedures

As a Mond-type growth response is assumed for all methods, the
following analytical procedures are chosen to measure parame-
ters correlating to the growth of C. glutamicum. For HFB,
backscatter measurements are performed in a BiolLector. In
contrast, sI-MSCC allows single-cell tracking by inverted phase
contrast microscopy. The sl-RA depends on the indirect growth
tracking by monitoring the OTR. To this end, high-throughput
OTR measurements are conducted in a uTOM device. The
equipment for the presented methods is not available in every
laboratory. However, the proposed approaches can be adapted
for other devices and provide insight into the theoretical

backgrounds behind ks estimation.
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3.2 | Substrate affinity ks estimations

The HFB method for ks estimation takes the data from the
microbioreactor batch cultivation, comprised of 464 backscatter
observations after preprocessing and one simulated glucose mea-
surement. Parametrization of the probabilistic Monod model
was obtained with uninformative prior beliefs of the model
parameters: Sg~LogNormal (u = Iog(ZO%), o =0.1), Xo~LogNormal
(1 = 10g(0.25%), 0= 0.1),  max~Beta(u = 04,0 = 0.1),  Yigs~ Beta
(u = 0.6, 0 = 0.05), ks ~ Uniform (0, «). Note that the prior information
for ks constrains it to positive numbers but does not bias the model
beyond that.
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The MCMC sampling of the joint posterior probability distribu-
tion (Figure 4b) for these five parameters given the 119+1
observations and corresponding calibration models yielded a total
of 200,000 parameter vectors, each corresponding to one possible
trajectory of Monod kinetics. In Figure 4c,d, individual examples of
such trajectories are drawn alongside a density band representing the
posterior probability distribution of trajectories. Vertical violin plots
show the 90% highest-density intervals of the posterior probability
distributions of biomass (green) and substrate (blue) concentrations
obtained from single measurements with the calibration model.
These are the narrowest intervals containing the inferred parameter
(here: biomass concentration) with a probability of 90%. Note that

inferences from single backscatter observations resulted in much

8 Ks 3 3 Hmax 9 8 Xo n g So :‘)
2 o0 h ¥ o N A ~
o oo o o o

gL gL gL

(d)

N
o

-
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Glucose /g L™
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FIGURE 4 Monod modeling results for high-frequency biomass observations (HFB). In (a) the raw backscatter and DO observations of the
transition from exponential to stationary phase show a deviation from the declining DO trend for three cycles (approx. 3 min) before a sharp rise

in DO. (b) Data up to the first cycle after the rise was considered to infer posterior probabilities of the Monod model parameters. The Yy,s and So

as well as pmax and Xo parameters are strongly correlated. The highest probability density for the ks parameter is near O mg/L. (c and d) Show the
resulting distribution of biomass and substrate trajectories predicted from sampled parameter sets. Violins indicate the probabilities inferred
from individual data points without the use of the Monod model. Thin lines indicate trajectories resulting from exemplary parameter sets.
The dashed line indicates the highest density interval, around 90% of the probability mass.
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larger uncertainty about biomass concentration than those obtained
from ODE model trajectories (green bands, dashed lines). This is
because ODE trajectories are constrained by the relatively rigid
assumption of Monod-like growth and the combined information
from 119 observations. Nevertheless, the curvature of trajectories is
visible at timescales of approximately less than 1 min (Figure 4c,d).
This asymmetric observation of “less than” corresponds to the
marginal posterior distribution of ks exhibiting no lower tail toward
0 g/L, but a clear tail toward higher concentrations. In this case, 95%
of the ks posterior probability distribution is <70.7 mg/L, correspond-
ing to the interpretation that ks < 70.7 mg/L with a 95% probability
according to this analysis. Since the 95% probability threshold is
arbitrary, equally valid statements with slightly different interpreta-
tions can be provided: ks < 21.5 mg/L with a 50% chance (the median)
or ks < 10.0 mg/L with a 26.4% chance.

In Figure 4b, two-dimensional marginals of the five-dimensional
joint probability distribution are shown as kernel density estimates.
These visualizations show that with this data set, ks is not correlated
to other parameters of the Monod model, whereas L.y is strongly
correlated with Xo, and Yy,s is strongly correlated with So. These
correlations are structural and well expected (Helleckes et al., 2022).
If a lower Sq is estimated, Yxs has to be higher to fit the biomass
observations. Due to the strong Monod assumptions and the 464
backscatter observations, our posterior estimate for the pmay of this
batch is rather narrow with 90% of the probability mass in the
interval [0.395, 0.416] h™%.

For respiratory estimation of the ks with the sl-RA, 96 batch
cultivations were performed simultaneously in a 96-deepwell plate.
The online monitored OTR of these cultivations show an increase
and, therefore, the initial growth of C. glutamicum for the first 3h
(Figure 5a). The rapid decrease of the OTR afterwards points to the
depletion of the main carbon source glucose, which was only supplied

with 1 g/L. The utilization of alternative carbon sources leads to a low
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OTR of around 1 mmol/L/h, which is also progressively decreasing
after 3.5 h (Figure 5a). As soon as glucose is spiked into the wells,
growth, according to Monod (Equation 1), sets in. Only for the
glucose spike concentration of 0 mg/L a lower OTR after spiking was
measured with 0.9 + 0.1 mmol/L/h. The glucose-dependent OTRs are
also depicted in Supporting Information: S14-16. The differences
between the OTR reference value at 0 mg/L and all other OTRs were
calculated (Figure 5b). For spiked glucose concentrations of at least
20mg/L, a constant AOTR of 2mmol/L/h is noticeable. The
decreased AOTR value for the condition with a glucose concentration
of 100 mg/L could be subject to measurement variance or caused by
a physiological explanation due to overflow metabolism. However, as
this work focuses on the ks value, this trend was not further
investigated here. For glucose concentrations of 20 to O mg/L, the
AOTR is decreasing. With the regression to the Monod equation, a kg
of 8.55 + 1.38 mg/L was obtained with a coefficient of determination
of R?=0.95. A logarithmic plot of Figure 5b is given in Supporting
Information: S17.

Growth experiments in CGXIl with varying glucose concentra-
tions were performed with C. glutamicum at 30 °C using sI-MSCC for
72 h. For the assurance that the distribution of the doubling time
follows a Gaussian distribution, distributions of selected concentra-
tions are shown as examples. At glucose concentrations of
500mg/L (Figure 6a), the average doubling time is about
75+ 15 min with low variance. Furthermore, the single-cell tp are
normal distributed with a coefficient of determination of R? = 0.97. At
glucose limiting concentrations, the dispersion and variance increase
drastically, leading to tp at 5 mg/L of 188 + 204 min (Figure 6b) and at
2.5mg/L of 122 + 69 min (Figure 6c) with a coefficient of determina-
tion of R?2=0.76 and R?=0.89, respectively. We exclude technical
bias at the concentration of 5mg/L due to limitations or gradients in
nutrition. Thus, we are convinced that the nongaussian distribution is

due to the limiting carbon-conditions itself. We speculate that the

O
Nt
1

[J Spike activity
—— Least square monod fit

Oxygen transfer rate
difference AOTR(c;)/ mmolL"h

ks si.ra = 8.55 % 1.38 mg-L"

0 20 40 60 80 100
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FIGURE 5 Substrate limited respiratory activity estimation (sI-RA) of the ks for Corynebacterium glutamicum with glucose spiked batch
cultivations. (a) Oxygen transfer rates of C. glutamicum cultivations (N = 96) spiked with 16 different glucose concentrations (N = 6) after glucose
depletion of the main culture. (b) Correlation of the resulting oxygen transfer rate difference after the spike to the respective glucose
concentrations with N = 6. Culture conditions: 96-deepwell microtiter plate, V. =1 mL, n =800 rpm, do = 3 mm, T = 30 °C, CGXIIl medium without
protocatechuate acid, spike with 100 pL of 16 different glucose concentrations.
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FIGURE 6 Cumulative distribution of tp for at least three biological replicas containing at least 50 single-cell tp of Corynebacterium
glutamicum ATCC 13032 at (a) 500 mg/L, (b) 5 mg/L, (c) 2.5 mg/L glucose in CGXII. (d) Glucose-dependent maximum specific growth rates of
individual C. glutamicum cells grown in microfluidic perfusion. The black line denotes the fit of the Monod equation to the data set.

limiting growth condition leads to a reduced energy availability for a
subpopulation of cells which are struggling to maintain growth. It is
reported that under limiting carbon-source conditions, cells have
difficulties to maintain optimal growth and cell-to-cell heterogeneity
increases (Bettenworth et al., 2019; Lindemann et al., 2019;
Martins & Locke, 2015).

Therefore, single-cell tp of at least three lineages of a mother cell
were analyzed to determine p. Within the observed glucose
concentration range from O to 150g/L, a Monod-type response
was observed (Figure 6d). At concentrations higher than 500 mg/L,
growth of C. glutamicum peaked and remained constant with an
observed maximum specific growth rate of .y = 0.41+0.02 h™ L. At
glucose concentrations between 1 mg/L and 100 mg/L an increase of
doubling time was observed, resulting in reduced cell growth
(M=0.13+0.10h™Y, p=0.39+0.16h7Y). Glucose concentrations
smaller than 1 mg/L resulted in a growth arrest. The regression of
the obtained growth data to the Monod equation yielded an average
ks mean =2.66 £0.99 mg/L with a coefficient of determination of
R?=0.87.

3.3 | Comparison of ks estimations

The presented methods within this work yielded comparable kg
values. Moreover, the obtained data are in good agreement with
literature values (Table 1). The already published ks values for glucose
range from 0.52 to 7.68 mg/L, including given standard deviations.
Lindner et al. (2011) obtained a value of 2.52 mg/L and Uhde et al.
(2013) 2.17-2.70 mg/L by applying liquid scintillation counting. Both
values match very well. However, the used protocol of both was
highly similar. In these studies, different concentrations of 4C
labeled glucose was supplied to previously washed C. glutamicum
cells. After defined time intervals, cell samples are collected and
analyzed with a scintillation counter. The data indicate a high
reproducibility and a very precise monitoring of glucose uptake rates.
Nonetheless, the required equipment and components impede a
broad and fast application of this method. In contrast, Graf et al.
(2020) utilized enzymatic assays to determine glucose concentrations
and deduct glucose consumption rates in batch and chemostat
cultivations. Based on a mathematical fit, a ks with 4.39 + 3.20 mg/L
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in batch and 0.97+0.45mg/L in chemostat cultivation has
been estimated.

While an enzymatic assay for glucose has a detection limit of
400 pg/L, it provides an accurate and fast estimation of residual
glucose concentration. However, if the expected affinity toward
glucose is higher and consequently below the detection limit, liquid
scintillation counting or HPLC are necessary. Interestingly, the
authors note different ks values for batch and chemostat cultivations
but do not elaborate on the reason because the work had a different
focus. This differentiation of batch and continuous cultivation for kg
value estimation is often neglected. However, the ks value is subject
to the cell state, duration of cultivation as well as environmental
conditions and therefore, can vary between batch and chemostat
cultivations. Reasons for the deviations could include the washout of
slower growing cells due to the set dilution rate or the continuous
supply of PCA as a secondary carbon source during chemostat
cultivation (Baumchen et al., 2007).

In addition to the aforementioned established methods, three
alternative methods for ks estimation are presented in this work. HFB
and sl-RA are advantageous with their fast and, in the case of the sl-
RA, simple estimation approach. Even though, the estimated ks values
suggest that slI-RA (8.55 + 1.38 mg/L) and HFB (<70.7 mg/L with 95%
probability) are not advisable for investigations below concentrations
of 10 mg/L. For HFB, the temporal resolution of the BioLector-based
biomass observations is limiting, at least for the presented application
example with C. glutamicum and glucose as carbon source, resulting in
a sharp switch from exponential to stationary phase growth. The
increased ks value for the sI-RA compared with the sI-MSCC method
is partially explained by an inherent overestimation due to the
measurement principle. Oxygen partial pressure values are averaged
within the required measurement time frame for OTR determination.
However, for the ks estimation, the initial glucose concentrations are

assumed. This effect becomes more prominent with further increased
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lengths of the measurement phase (Supporting Information: S18).
Similar to HFB, this overestimation depends on the sharpness of the
switch from exponential to stationary phase and, therefore, on the kg
value. In contrast, a ks value under defined environmental conditions
was obtained by the sI-MSCC approach (2.66+0.99 mg/L). This
method is applicable in concentration ranges below 1mg/L. The
image acquisition frequency for determining tp plays an essential
role. A division event may be documented one frequency interval
later than it occurred, leading to increased deviations of the
determined tp. This aspect is compensated by the number of
individual cells tracked and counted. Therefore, the experimental
and evaluation throughput of this method must be further increased.
For initial estimations or situations where the ks value is expected to
be rather in the higher mg/L range, HFB and sI-RA can be taken into
consideration due to the reduced labor intensity. The sI-MSCC
method can vyield similar results as lab-scale fermentations in
combination with liquid scintillation counting or enzymatic assays.
Moreover, sI-MSCC data contains additional information about cell-
to-cell heterogeneities, which will be discussed in the following

section.

3.4 | Potential of sI-MSCC

In contrast to the presented microtiter plate methods, sl-MSCC
allows, in addition to ks determination, insights into cell-to-cell
heterogeneity regarding growth and tp at different cultivation
concentrations. For the assurance of a steady state during cultivation,
the cumulative distribution of the tp was plotted as a function of cell
generation for each glucose concentration. Here, a constant
distribution of the doubling time of approximately 80 min within
the first 10 generations was observed for an applied concentration of

500 mg/L glucose (Figure 7a). Similar trends have been obtained for
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FIGURE 7 (a) Distribution of single-cell tp of individual Corynebacterium glutamicum cells as a function of cell generations at a glucose
concentration of 500 mg/L. (b) Glucose-dependent maximum specific growth rates of individual C. glutamicum cells grown in microfluidic
perfusion. The black line denotes the fit of the Monod equation to the data set, while the red and blue lines give the upper and lower boundaries

of the mathematical fit, respectively.

85UB017 SUOLLLIOD SAINRID 3ot dde 8y} Aq peuIenob 88 S9o1Le YO ‘SN J0 $9INI 10} ARIq1T BUIIUO AB[IM UO (SUONIPUCD-PUE-SWISIW0D A8 | 1M ALe1q 1 pU1|UO//:SANLY) SUONIPUOD pue Swie | 8Y) 89S *[£202/80/LT] U0 A%iqiT auluo A8 |1 *BIUBD Ud1eesay HAWD Yo!Ine winiuszsBunydsio4 Aq GyE8Z 110/Z00T 0T/10p/Luod A8 | im Ake.q ul|uo//:sdny wouy pepeojumod 'S €202 '0620260T



STEINHOFF ET AL.

BIOTECHNOLOGY]| WILEY 1299
BIOENGINEERIN

TABLE 1 Overview of substrate affinities of Corynebacterium glutamicum toward glucose.
Method Analytics ks (mg/L) Mode Reference
14c uptake rate Liquid scintillation counting 2.52 Batch Lindner et al. (2011)
14C uptake rate Liquid scintillation counting 2.17-2.70 Batch Uhde et al. (2013)
Consumption rate Enzymatic assay 4.39+3.20 Batch Graf et al. (2020)
Consumption rate Enzymatic assay 0.97+0.45 Chemostat Graf et al. (2020)
HFB BioLector <70.7 Batch This work
sl-RA UTOM 8.55+1.38 Batch This work
sl-MSCC Live-cell imaging 2.66+0.99 Perfusion This work

Abbreviations: HFB, high-frequency biomass; sI-MSCC, substrate-limited microfluidic single-cell cultivation; sI-RA, substrate-limited respiratory activity

monitoring; uTOM, micro(u)-scale Transfer rate Online Measurement.

other glucose concentrations, where steady-state growth lays the
foundation for precise determination of tp (Supporting Informa-
tion: S1-S12). The first observation is that a steady state in
cell growth and division at constant glucose concentrations of
>1 mg/L can be maintained for at least 10 generations (up to the end
of the experiment), which corresponds to <2 h/generation. At glucose
concentration of <1 mg/L steady-state growth cannot be maintained
for more than ~4.25h/generation (Supporting Information: S13).
Here, cell growth declines over the time course of cultivation,
resulting even in a stop of growth after eight generations. A possible
interpretation can be attributed to the declining storage of carbon
sources (Farwick et al., 1995; Koch, 1983; Wolf et al., 2003). The
obtained standard deviation, represented by the error bars in
Figure 6d represents the cell-to-cell heterogeneity in tp of the
analyzed cells rather than a statistical error. Thus, 60% of the cells
behave within the observed distribution of the average doubling
time. This behavior can be used to determine upper and lower
boundary values for ks because these boundaries can be seen as an
approximation of 95% of the cell behavior. Therefore, two additional
mathematical fits were made to derive a ks from the upper boundary
(mean growth rate +standard deviation) and the lower boundary
(mean growth rate - standard deviation). The mathematical fit of the
estimated data yielded an upper boundary of ksupper boundary =
1.97+0.56 mg/L and a lower boundary of Ksjower boundary =4.94
3.03 mg/L with a statistical certainty of the applied regression to the
Monod equation of R?>0.92 for the upper boundary and R? > 0.73
for the lower boundary (Figure 7b).

In future, further sI-MSCC experiments need to show if and how
cells adapt regarding growth and tp at different concentrations. The
emergence of potential subpopulations has to be analyzed (Arnoldini
et al., 2014). These insights help to understand the cellular behavior
at limiting conditions and, thus, the dynamics within ks values.

The sI-MSCC method needs to be further parallelized, especially
to collect statistically relevant numbers of cell division at limiting
nutrient concentration (cs < ks). A critical step is progress in data
analysis, which must be automated. In future, by an extension to an
oscillation setup, ks values under dynamic environmental conditions

will be accessible, which cannot be measured with any other system
(Ho et al., 2022).

4 | CONCLUSION

In this work, the recently introduced method of sI-MSCC, which
enables the estimation of ks by microfluidic perfusion experiments,
was revisited and validated for the model organism C. glutamicum
ATCC 13032 with glucose as limiting substrate and compared to HFB
and sl-RA. Model-based Bayesian inference based on HFB is a rapid
and extendible method to estimate the upper limits of ks, where the
possibility of estimating lower limits is directly dependent on
the temporal resolution of the measurements. The s|-RA is an
innovative and fast method that provides more precise values than
HFB, because of the higher temporal resolution provided through
online OTR measurement. However, for estimations of the ks under
defined environmental conditions, sI-MSCC in combination with live-
cell imaging seems to be a superior technology because it provides
insights into growth behavior at and below the substrate affinity,
provides access to cell-lineage information and to single-cell
heterogeneity. This enables to model a growth kinetic based on
actual observed single-cell growth data without extrapolation.
Additionally, sI-MSCC can be used to investigate the influence of
cell-to-cell heterogeneity on bulk ks values. The sI-MSCC gives
insights into growth deviation and adaptation compared to HFB
and sl-RA. In future, sI-MSCC may provide strain-specific ks values
to tackle the lack of availability. Furthermore, with the extension
to an oscillation setup, affinities under fluctuating environmental

conditions can be analyzed for the first time in future.
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